CASE 2 – MICROBIOLOGY

GASTROENTERITIS

DR. DALIA MOEMEN

CAUSES OF ACUTE DIARRHEA

Infection
- Gastroenteritis

Non-infection
- Milk/food allergies, drug side effects, malabsorption

Non-enteric
- Otitis media, Meningitis, sepsis

TRAVELER’S DIARRHEA

Agent *Escherichia coli*
- Multiple antigenic strains (O, H, K)
- Virulent strains have fimbriae, adhesions and multiple toxins

ETEC Enterotoxigenic *E. coli*
- Enterotoxins very similar to cholera toxin
- Typically self limiting

EIEC Enteroinvasive *E. coli* (EIEC)
- Penetrate & multiply within epithelial cells of colon causing cell necrosis.
- Cause dysentery and fever which is identical to *S. dysenteriae* (S. dysenteriae)

EHEC Enterohemorrhagic *E. coli*
- O157:H7
- Produce potent Shiga-like toxins
- Haemolytic uremia

SALMONELLOSIS

Agent *Salmonella enterica*
- 2000 strains (serotypes)
- Typhimurium and Enteritidis commonly cause Salmonellosis
- Typhi and Paratyphi cause Typhoid Fever

Habitat Common intestinal flora of human & animals

Reservoir Contaminated animal products (Reptiles, eggs and undercooked poultry)

Pathogenesis
- Virulent strains tolerate stomach acid and pass to intestine
- Toxin induces phagocytosis in intestinal cells
- Pathogen reproduces inside phagosome killing host cell
- Bacteria (Typhi) may pass through intestinal cells into bloodstream

SHIGELLOSIS

Agent *Shigella* sp. (family Enterobacteriaceae)

Dose
- Low infecting dose
 - Bacteria not sensitive to stomach acid
 - As few as 10 organisms.

Reservoir Human (1st reservoir)

Transmission
- Fingers, food and water contaminated by excreta of infected individuals.

IP
- 12hours – 2days

Pathogenesis
- Cells of large intestine and initiates intense inflammatory response
- Dead cells slough off
- Produces areas covered with pus and blood
- Enterotoxin
 - *S. dysenteriae* produces powerful endotoxin - shiga-toxin
 - Ciprofloxacin, rifampin or azithromycin may reduce duration and infectivity

Lab dx
- Refer Enterobacteriaceae handout*

COMPYLOBACTERIOSIS

Agent *Campylobacter jejuni*

Dose Low infecting dose

Transmission
- Associated with poultry

Pathogenesis
- Virulent strains possess adhesions, cytotoxins and endotoxin
- Induce endocytosis in cells of intestine and initiate inflammation and bleeding lesions
- Non-motile mutants are avirulent
- Severe cases treated with ciprofloxacin or azithromycin

Lab dx
- Curved ("seagull" or "comma") shaped gram negative organisms

Epidemiology
- Leading cause of bacterial diarrhea in United States
- Estimated 1 million cases annually with ~100 deaths
Lab Dx

Diagnosis of first case in non-endemic area

| a. Specimens: mucus flecks from rice water stools. |
| b. Direct examination of the feces: |
| ▪ Wet smear to detect rapidly motile bacteria on direct bright-field, or dark-field microscopic |
| ▪ By film stained by gram to show the comma shaped gram negative rods. |
| c. Culture: |
| ▪ O2 : Highly aerobic |
| ▪ pH : 8-9 (alkaline) |
| ▪ Grow on simple media |
| ▪ Mucus flecks from stools are inoculated on alkaline peptone water pH 8.5. |
| ▪ Subculture from the surface pellicle after 6-8 hrs on TCBS or alkaline agar. |
| ▪ On TCBS medium (thiosulphate citrate bile sucrose), they give yellow colonies as they ferment sucrose. |
| d. Colonies identification |
| ▪ Film stained by Gram: V.cholera is comma shaped Gram-negative rods motile by single, polar flagellum, (darting motility). |
| ▪ Biochemical reactions: |
| ▪ o ferments glucose, maltose, mannite and sucrose with production of acid only. |
| ▪ o Cholera red +ve |
| ▪ o Oxidase +ve |
| ▪ Agglutination with V.cholera O group 1 polyvalent antiserum |
| e. PCR |

Cholera

Agent

Vibrio Cholera

Transmission

water or food contaminated by human feces

Host

Humans are the only natural host for this organism.

Structure

a. H : Flagellar antigen

b. O : Somatic antigen
 o more than 139 known O serotypes.
 o A single serotype, O1, responsible for epidemic cholera.
 o Two biotypes of V. cholerae are described: Classic and El Tor.
 o The Bengal strain (O139) is a new serological strain with a unique O-antigen (which is "non-O1"), that caused large epidemics of cholera.

d. Colonies identification
 o Film stained by Gram:
 V.cholera is comma shaped Gram-negative rods motile by single, polar flagellum, (darting motility).
 o Biochemical reactions:
 o ferments glucose, maltose, mannite and sucrose with production of acid only.
 o Cholera red +ve
 o Oxidase +ve
 o Agglutination with V.cholera O group 1 polyvalent antiserum

Dose

High infecting dose: 10^{8}-10^{10} organisms

- Bacteria sensitive to stomach acid
- Adheres to small intestine and multiply
- Bacteria don’t enter cells (not invasive)

IP

2 hours – 5 days

Pathogenesis

- Penetrate the mucus layer covering of intestinal mucosa by secretion of neuraminidase and proteases.
- Adhere to the mucosal cell by fimbriae and OMPs where they subsequently produce toxin.
- Cholera toxin
 o Potent exotoxin
 o Causes intestinal cells to rapidly pump out electrolytes
 o Passive osmotic H₂O loss follows
 o Metabolic acidosis
 o Shock
- Heavy loss of fluid “rice-water stool”
 o Up to 20L of fluids lost per day
 o May discharge 1 million bacteria per ml of feces
- Untreated cases potentially fatal
 o Fluid/electrolyte replacement
 o Tetracycline reduces toxin production

Ttt

- Rapid intravenous replacement of the lost fluid and ions.
- Most antibiotics have no value in cholera therapy.
- But moderate or broad spectrum antibiotics may be used to reduce the output of viable organisms.

Control

- Sanitary.
- Vaccination:
 o Killed whole cell vaccine: IM
 o Two recently developed oral vaccines for cholera
 1) Whole cell killed vaccine
 2) Live attenuated vaccine:
 o Purified LPS fractions have also been given as vaccines with variable success
Viral Gastroenteritis

Agent
- Rotaviruses (Wheel-like)
- Noroviruses (Star-like)
Both naked RNA viruses

Epidemiology
- Infect intestinal cells causing cell death
- Typically self-limiting
- Norovirus epidemics cause 90% of cases
- Rotaviruses responsible for 50% of infant cases of serious diarrhea
- 600,000 worldwide annual fatalities
- Oral vaccine available

Food Intoxication

Agent
Staphylococcus aureus
- Halotolerant; grows well in foods at room temp
- Associated with cafeterias and social functions

Toxin
5 heat stable enterotoxins:
- 100° for up to 30 min
- Stimulate muscle contractions, nausea and intense vomiting, diarrhea and cramping
- Acute and self limiting
- Symptoms begin 4-6 hrs after consumption and end within 24 hrs

Botulism

Agent
Clostridium botulinum
- Obligate anaerobic, Gram +, spore forming bacillus
- Produce 7 different neurotoxins
- One of most deadly toxins known

S&S
- Dizziness, dry mouth, blurred vision
- Abdominal symptoms include pain, nausea, vomiting and diarrhea or constipation
- Progressive paralysis (Paralysis of respiratory muscles most common cause of death)

Type
- **Food-borne botulism** – progressive paralysis of all voluntary muscles due to toxin production
- **Wound botulism** – similar symptoms
- **Infant botulism** – bacteria grow in the intestines, producing non-specific symptoms
 - “floppy baby syndrome”

Epidemiology
- Food borne botulism
 - Commercial sterilization
 - Toxin destroyed by heating foods
- Wound botulism
 - Deep crushing wounds
- Infant botulism
 - Inhalation or ingestion of spores
 - Commonly associated with honey or juices

Prevention
- Proper sterilization and sealing of canned food
- No honey or unpasteurized juices for infants!!

Treatments
- Antitoxin
- Gastric washing and surgical removal of tissues
- Artificial respiration may be required
- Anti-microbials given to kill bacteria in infant and wound botulism