PNEUMONIA

DEFINITION

✓ It is acute inflammation of the lung parenchyma. The cause may be infectious or non infectious.
✓ It may be acquired in the community or in the hospital.
✓ Pneumonia affects 450 million/yr, 7% of population and result in 4 million deaths.

Community Acquired Pneumonia (CAP)
- an acute infection of the lung parenchyma
- associated with at least some symptoms of acute infection
- accompanied by the presence of an acute infiltrate on a chest radiograph
- or auscultatory findings consistent with pneumonia, in a patient not hospitalized or residing in a long term care facility for ≥14 days before onset of symptoms.

HAP is a pneumonia that occurs ≥ 48 hrs after hospital admission.

VAP is a pneumonia that occurs ≥ 48 - 72hrs after tracheal intubation.

HCAP is a pneumonia that occurs in any patient who was:
- hospitalized in an acute care hospital for 2 or more days within 90 days of infection,
- received recent IV antibiotics therapy, chemotherapy, or wound care within the last 30 days of the current infection
- or attended a hospital or hemodialysis clinic.

PATHOGENESIS

Inhalation, aspiration and hematogenous spread are the 3 main mechanisms by which bacteria reaches the lungs.

Other
- Inoculation
- Colonization
- Direct spread

Primary inhalation
- when organisms bypass normal respiratory defense mechanisms
- or when the Pt inhales aerobic GN organisms that colonize the URT/ respiratory support equipment

Aspiration
- occurs when the Pt aspirates colonized upper respiratory tract secretions

Stomach:
- reservoir of GNR that can ascend, colonizing the respiratory tract.

Hematogenous
- originate from a distant source & reach the lungs via the blood stream.

PATHOLOGY

<table>
<thead>
<tr>
<th>Initial Phase</th>
<th>Second Stage</th>
<th>Third Phase</th>
<th>Final Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage Of Congestion</td>
<td>Red Hepatization</td>
<td>Gray Hepatization</td>
<td>Resolution</td>
</tr>
<tr>
<td>proteinaceous exudate often of bacteria in the alveoli</td>
<td>Erythrocytes in the cellular intraalveolar exudate neutrophils are also present</td>
<td>no new erythrocytes are extravasating those already present have been lysed and degraded</td>
<td>- macrophage is the dominant cell type in the alveolar space</td>
</tr>
<tr>
<td>This phase is rarely evident in clinical or autopsy specimens because it is so rapidly followed by a red hepatization</td>
<td>Important from the standpoint of host defense Bacteria are occasionally seen in cultures of alveolar specimens</td>
<td>Neutrophil: predominant cell. Fibrin deposition is abundant. Bacteria disappeared</td>
<td>- the debris of neutrophils, bacteria, and fibrin has been cleared, as has the inflammatory response</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This phase is successful containment of the infection & improvement in gas exchange</td>
<td></td>
</tr>
</tbody>
</table>

† macrophage is the dominant cell type in the alveolar space
† the debris of neutrophils, bacteria, and fibrin has been cleared, as has the inflammatory response

CAP – CLASSIFICATION

<table>
<thead>
<tr>
<th>Anatomical</th>
<th>Etiological</th>
<th>Clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobar</td>
<td>Infective, and non infective</td>
<td>Typical and atypical CAP and HAP</td>
</tr>
<tr>
<td>Bronchopneumonia Interstitial</td>
<td></td>
<td>Pneumonia in Immunocompromized</td>
</tr>
</tbody>
</table>
INFECTIONOUS CAUSES OF CAP

Pneumonia is due to infections caused primarily by **bacteria** or **viruses** and less commonly by **fungi** and **parasites**.

<table>
<thead>
<tr>
<th>Typical</th>
<th>Atypical</th>
<th>Other</th>
<th>Viral</th>
<th>Fungal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococcus pneumonia 35%</td>
<td>Mycoplasma pneumoniae</td>
<td>An aerobic organisms</td>
<td>Influenza</td>
<td>Aspergillus</td>
</tr>
<tr>
<td>Staph aureus pneumonia</td>
<td>Chlamydophila pneumoniae</td>
<td>TB pneumonia</td>
<td>Parainfluenza pneumonia</td>
<td>Histoplasmosis</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>Legionella pneumophila</td>
<td></td>
<td>Measles</td>
<td>Candidiasis</td>
</tr>
<tr>
<td>Moraxella catarrhalis</td>
<td>Coxiella burnetii</td>
<td></td>
<td>Adenoviruses</td>
<td></td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td></td>
<td></td>
<td>Corona viruses</td>
<td>Parasitic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Toxoplasma</td>
</tr>
</tbody>
</table>

Clinical Presentation

- **Lung physical exam**
 - Sensitivity 47-69%; Specificity 58-75%
 - Acute cough (>90%)
 - Fevers/chills (80%)
 - Sputum production (66%)
 - Dyspnea (66%)
 - Pleuritic chest pain (50%)
 - Tachypnea (RR > 24)
 - Egophony
 - Bronchial breath sounds
 - Percussion dullness
 - Diminished breath sounds

Laboratory Tests

- CXR / CT
- CBC with differential
- BUN/Cr
- Glucose
- Liver enzymes
- Electrolytes
- Gram stain/culture of sputum
- Pre-treatment blood cultures
- Oxygen saturation

Diagnostic Evaluation

- CXR: usually needed to establish diagnosis
- Prognostic indicator
- Rule out other disorders
- May help in etiological diagnosis

Diagnostic: Cultures

- Pre-abx Blood Cultures
 - Yield 5-15%
 - Stronger indication for severe CAP
 - Host factors: cirrhosis, asplenia, complement deficiencies, leukopenia
- Pre-abx expectorated sputum Gs & Cx
 - Yield can be variable
 - Depends on multiple factors: specimen collection, transport, speed of processing, use of cytologic criteria
 - Adequate sample w/ predominant morphotype seen in only 14% of 1669 hospitalized CAP pts (Garcia-Vasquez, Arch Intern Med 2004)
- Pre-abx endotracheal aspirate Gs & Cx
- Pleural effusions >5 cm on lateral upright CXR

Risk Factors for Multidrug Resistance (MDR)

1. Antibiotics in the past 90 days
2. High frequency of antibiotic resistance in community
3. Immunosuppressive disease or medications
4. HCAP Risk Factors:
 - Hospitalization for at least 2 days in the past 90 days
 - Residence in a SNF
 - Home infusion therapy
 - Dialysis within 30 days
 - Family member with MDR infection

To Admit or Not?

Pneumonia Severity & Deciding Site of Care

- Using objective criteria to risk stratify & assist in decision re outpatient vs inpatient management
- CURB-65
- PSI
- Caveats
 - Other reasons to admit apart from risk of death
 - Not validated for ward vs ICU
 - Labs/vitals dynamic

Applying the CURB-65 Rule

- Group 1: Mortality low (1.5%)
 - (n = 324, died = 3)
- Group 2: Mortality intermediate (0.3%)
 - (n = 184, died = 17)
- Group 3: Mortality high (72%)
 - (n = 216, died = 47)
- Group 4: Mortality very high (100%)
 - (n = 213, died = 213)

Treatment Options

- Likely suitable for home treatment
- Consider hospital-supervised treatment
- Options may include: respiratory therapies, hospice, palliative care, outpatient

Managing in hospital as severe pneumonia

- Assess for ICU admission: especially if CURB-65 score > 4 of 5

DBP = diastolic blood pressure

Criteria for Severe CAP (Admit to ICU)

<table>
<thead>
<tr>
<th>Minor criteria</th>
<th>Major criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Respiratory rate ≥30 breaths/min</td>
<td>6. Leukopenia (WBC <4000 cells/mm³)</td>
</tr>
<tr>
<td>2. PaO2/FiO2 ratio ≥ 250</td>
<td>7. Thrombocytopenia (platelets <100,000 cells/mm³)</td>
</tr>
<tr>
<td>3. Multilobar infiltrates</td>
<td>• Invasive mechanical ventilation</td>
</tr>
<tr>
<td>4. Confusion/disorientation</td>
<td>• Septic shock with the need for vasopressors</td>
</tr>
<tr>
<td>5. Uremia (BUN ≥20 mg/dL)</td>
<td>8. Hypothermia (core T <36°C)</td>
</tr>
<tr>
<td>9. Hypotension requiring aggressive fluid resuscitation</td>
<td></td>
</tr>
</tbody>
</table>

Management

1. Rational use of microbiology laboratory
2. Pathogen directed antimicrobial therapy whenever possible
3. Prompt initiation of therapy
4. Decision to hospitalize based on prognostic criteria

- **American Thoracic Society (ATS)**
 - Guidelines - Management of Adults with CAP (2001)
- **Infectious Diseases Society of America (IDSA)**
- **ATS and IDSA joint effort (we will follow this)**
 - IDSA/ATS Consensus Guidelines on the Management of CAP in Adults (March 2007)

Group 1

- <60 years & Healthy
- no risk factors for DR *S.pneumoniae*
- Macrolide or Doxycycline

Group 2

- >65 yrs & Presence of co-morbidities
- use of antimicrobials within prev 3 mths
- regions with a high rate (>25%) of infection with Macrolide resistant *S. pneumoniae*
- Respiratory FQ – Levofox, Gemifloxacin or Moxiflox
- 1. Beta-lactam (High dose Amoxicillin, Amoxicillin- Clavulanate is preferred; Ceftriaxone, Cefodoxime, Cefuroxime)
- plus
- Macrolide / Doxycycline

Group 3

- hospitalization
- Not severely ill
 - (i.e., medical word)
- Respiratory Fluoroquinolone (FQ) Levo. 750 mg/day, Moxi. 400 mg, Gemiflox. Or IV Beta-lactam plus a Macrolide (or Doxycycline)
- (Here Beta-lactam agents are 3 Generation: Cefotaxime, Ceftriaxone, or ampicillin-sulbactam or aztereonam if pseudomonas suspected)

Group 4

- severely ill, ICU treatment
- No Rs Double drugs (piperacillin-tazobactam, cefepime, imipenem, or meropenem) plus a fluoroquinolone (levofoxacin, or ciprofoxacin= level one evidence or azithromycin level 2 evidence)
- With Rs (for pseudomonas infection) Triple (A ps. (piperacillin-tazobactam, cefepime, imipenem, or meropenem), aminoglycoside plus a M or Q(cipro. or levofoxacin)
- 3. For CA-MRSA Add (vancomycin or targocid)

(Walking Pneumonia) Called Mycoplasma Atypical pneumonia

<table>
<thead>
<tr>
<th>Definition</th>
<th>Symptoms</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>a mildest form of pneumonia.</td>
<td>• Fever, muscle aches, headaches</td>
<td>– Antibiotic course lasts up to 2 weeks</td>
</tr>
<tr>
<td>• Contagious disease</td>
<td>• Running nose and cold</td>
<td>– Macrolides or Quinolones</td>
</tr>
<tr>
<td>• Caused by mycopl., Legionella, and even Chlamydia.</td>
<td>• Sudden chills</td>
<td>– Antipyretic and hydration</td>
</tr>
<tr>
<td>• Affect 2 million / year in USA</td>
<td>• Sore throat developed by constant cough</td>
<td></td>
</tr>
<tr>
<td>• Common in school-going children and below 40 yrs</td>
<td>• May experience low and rapid breathing at times</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Severe pain in ears, eyes, chest and abdominal muscles</td>
<td></td>
</tr>
</tbody>
</table>

Thugs
Influenza pneumonia Treatment

First-line Tx is neuraminidase inhibitors for both influenza A and B:
- **Oseltamivir** 75-150* mg PO BID x 5+ days
- **Zanamavir** 10 mg INH BID x 5+ days

NOTE: influenza A resistant to adamantanes (amantadine, rimantadine)

* There is limited data in support of double dosing. But we do it anyway.

Antiviral Therapy for Influenza

Should be started ASAP in:
- Anyone hospitalized with suspected or confirmed influenza
- Anyone with severe, complicated or progressive respiratory illness
- Anyone at higher risk of complications from influenza

Individuals at Higher Risk for Influenza Complications

- Extremes of age: children <2, adults ≥65 years
- Comorbid conditions:
 - Chronic pulmonary
 - Cardiovascular (except HTN alone)
 - Renal, hepatic, hematologic, metabolic (DM)
 - Neurologic, neuromuscular (cerebral palsy, epilepsy, CVA, SCI)
- Immunosuppression (caused by meds, HIV infection)
- Pregnant or post-partum (<2 wks) women
- Persons <19 years on long-term aspirin
- American Indians & Alaskan Natives
- Morbidly obese (BMI ≥40)
- Residents in NH or chronic-care facilities

Follow-up Response, Expected improvement?

- Clinical improvement w/ effective abx: 48-72 hrs
- Fever can last 2-5 days with Pneumococcus, longer with other etiologies, esp Staph aureus
- CXR clearing
 - If healthy & <50 yo, 60% have clear CXR x 4 wks
 - If older, COPD, bacteremic, alcoholic, etc. only 25% with clear CXR x 4 wks
- Switch from IV to PO
 - Hemodynamically stable, improving clinically
 - Able to ingest meds with working GI tract

HAP Treatment Guideline

* Guideline was published in 1996 by American thoracic society and separated patients into three groups, each with a set of probable pathogens.
* Group 1: mild to moderate HAP with no risk factor
* Group 2: mild to moderate HAP with risk factor
* Group 3a: severe HAP, early-onset with no risk factor
* Group 3b: severe HAP, late-onset or with risk factor

Group 1 & 3A

<table>
<thead>
<tr>
<th>Core Pathogens</th>
<th>Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Aminoglycoside or ciprofloxacin plus 1 of the following: Antipseudomonal penicillin or antipseudomonal β-lactam/β-lactamase inhibitor combination</td>
</tr>
<tr>
<td>Acinetobacter</td>
<td>Cefepime, ceftazidime or cefepime plus metronidazole</td>
</tr>
<tr>
<td>MRSA</td>
<td>Vancomycin if MRSA suspected</td>
</tr>
</tbody>
</table>

Group 2

<table>
<thead>
<tr>
<th>Core Pathogens</th>
<th>Core Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram-positive cocci</td>
<td>Cephalexin</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td>Second-generation or nonpsuedonomal third-generation β-lactam/β-lactamase combination</td>
</tr>
<tr>
<td>Methicillin-susceptible S. aureus</td>
<td>If allergic to penicillin: Fluoroquinolone or clindamycin + aztreonam</td>
</tr>
<tr>
<td>Gram-negative bacilli (non-Pseudomonas)</td>
<td>Enteobacter</td>
</tr>
<tr>
<td>E. coli</td>
<td>Klebsiella</td>
</tr>
<tr>
<td>Proteus</td>
<td>Serratia marcescens</td>
</tr>
<tr>
<td>H. influenzae</td>
<td></td>
</tr>
</tbody>
</table>

Group 3B

<table>
<thead>
<tr>
<th>Core Pathogens</th>
<th>Core Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaerobes (recent abdominal surgery, witnessed aspiration)</td>
<td>Clindamycin or β-lactam/β-lactamase inhibitor combination (alone)</td>
</tr>
<tr>
<td>Staphylococcus aureus (coma, head trauma, diabetes mellitus, renal failure)</td>
<td>Vancomycin (until MRSA ruled out)</td>
</tr>
<tr>
<td>Legionella (high-dose steroids)</td>
<td>Erythromycin ± rifampin</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa (prolonged ICU stay, steroids, antibiotics, structural lung disease)</td>
<td>See Table 3</td>
</tr>
</tbody>
</table>

Reducing ventilator-associated pneumonia in ICU

- Ventilation-associated pneumonia
- > 48 h after intubation
- HAP = hospital acquired pneumonia
 > 48 h after hospital admission

What we do know about VAP:
- A common and severe complication of mechanical ventilation
- Increases mortality, morbidity and costs

Pathogenes

<table>
<thead>
<tr>
<th>Early VAP</th>
<th>Late VAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aereus</td>
<td>Pseudomonas</td>
</tr>
<tr>
<td>Streptococcus</td>
<td>Klebsiella</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>Acinetobacter</td>
</tr>
<tr>
<td></td>
<td>Stenotrophomonas</td>
</tr>
</tbody>
</table>

Treatment

- Broadspectrum antibiotics
- Multiresistance